Head and Neck pathology

Pr Cécile Badoual Service d'anatomo-pathologie Hôpital Européen G Pompidou

P Bonfils, J-M Chevallier Anatomie ORL-Flammarion

Case 1A Man 56yo hard palate

Case 1B Man 72 yo smoker oral cavity biopsy

Oral epithelial disorder

_

Premalignant lesions	Premalignant conditions
Leukoplakia	Lichen planus
Erythroplakia	Discoid lupus erythematosus
Proliferative verrucous leu- koplakia(PVL)	Epidermolysis bullosa
Viadent leukoplakia	Verruciform xanthoma
Candida leukoplakia	Graft-versus-host-disease
Reverse smokings' palate	Cheilitis glandularis
Verrucous hyperplasia	Xeroderma pigmentosum
Oral vertucous carcinoma	Syphilis (third stage)
Dyskeratosis congenita	Plummer-Vinson syndrome
Actinic cheilosis	Malnutrition
Keratoacanthoma	Vitamin A, B, C deficiency
Oral submucous fibrosis	Immunosuppressive diseases [AIDS]

Disorders	Clinical features	Locations	Risk of malignancy
Leukoplakia	White plaque	Cheeks, lips, gingivae	15.6-39.2%
Early (thin)			NA**
Homogenous			1-7%
Verruciform			4-15%
Speckled			18 -47%
Erythroplakia	A predominantly red lesion	Mouth floor, tongue, retromolar pad, soft palate	51%
Proliferative verrucous leu- koplakia (PVL)	Multifocal white patch or plaque + rough surface projections	Gingivae	63.3-100%
Viadent leukoplakia	White patch or plaque	Gingivae, buccal and labial vesti- bule	NA
Candida leukoplakia	Firm, white leathery plaques	Cheeks, lips, palate	4–5 times more common than leu- koplakia
Smokeless tobacco keratosis	White plaque	Buccal or labial vestibule	NA
Palatal keratosis associated with reverse smoking	White patches and plaques	Palate, tongue	83.3% dysplasia 12.5% SCC
Verrucous hyperplasia	Extensive thick white plaque	Buccal mucosa	68% dysplasia
Oral verrucous carcinoma	Extensive thick white plaque	Buccal mucosa	20%
Dyskeratosis congenita	Oral leukoplakia	Buccal mucosa, tongue, oropharynx	NA
Actinic cheilosis	Diffuse, poorly defined atrophic, erosive, ulcerative or keratotic plaques	Lower lip	6–10%
Keratoacanthoma	Firm,sessile non tender nodule + a central plug of keratin	Lips, tongue, sublingual region	24%
Oral submucous fibrosis	Mucosal rigidity	Buccal mucosa, retromolar area, tongue, soft palate	7–26%
Lichen planus	Reticular, erosive, atrophic, bullous, ulcerative, popular, plaque like	Posterior buccal mucosa, tongue, gingivae, palate, vermilion border	0.4-3.7%
Discoid lupus erythematosus White plaques with elevated bor- ders, radiating white striae and telangiectasia		Cheeks, lips, palate	NA
Epidermolysis bullosa Bullae and vesicle formation lowing mild trauma		Cheeks, tongue, palate	25%
Verruciform xanthoma	form xanthoma A well demarcated mass with a gingivae, tongue, buccal mucos yellow-white or red color and a papillary or verruciform surface mouth Gingivae, tongue, buccal mucos		NA
Graft-versus host disease	Atrophy, erythema, erosions, ulcers, lichenoid lesions	Cheeks, tongue, lips, buccal & labial vestibule	NA

^{*}NA: not assigned

Cas 10 Man 42 yo smoker, oral cavity, palate

Diagnosis criteria for epithelial dysplasia,

adaped Barnes L

Architecture	Cytology
Irregular epithelial stratification	Abnormal variation in nuclear size (anisonucleosis)
Loss of polarity of basal cells	Abnormal variation in nuclear shape (nuclear pleomorphism)
Drop-shaped rate ridges	Abnormal variation in cell size (anisocytosis)
Increased number of mitotic figures	Abnormal variation in cell shape (cellular pleomorphism)
Abnormally superficial mitoses	Increased nuclear-cytoplasmic ratio
Premature keratinization in single cells (dyskeratosis)	Increased nuclear size
Keratin pearls within rate pegs	Atypical mitotic figures
	Increased number and size of nucleoli
	Hyperchromasia

International Journal of Clinical Oncology Environmentation February 2011, Volume 16, Issue 1, pp 15–26 | <u>Cite as</u>

Oral premalignant lesions: from the pathological viewpoint

Authors

Authors and affiliations

Toshiyuki Izumo 🖂

Fig. 1 a OIN/CIS (JSOP) differentiated type, c immunohistochemistry for Ki-67/MIB1 (differentiated type) [7]. b OIN/CIS (JSOP) basaloid type, d immunohistochemistry for Ki-67/MIB1 (basaloid type)

Fig. 2 a OIN/CIS(JSOP) differentiated type (left) (arrow shows the front line), b–c immunohistochemistry for Ki-67/MIB1 (b), cytokeratin 13 (c) and cytokerain 17

WHO	SIN	SIL	OIN/CIS (JSOP) system	
		Hyperplasia	Reactive atypical	
		/keratosis	epithelium	
Mild dysplasia	SIN1			
		SIL I	$OED \rightarrow$	Follow up
Moderate dysplasia	SIN2	(low grade)		
Severe dysplasia	SIN3	SIL II	$OIN/CIS (JSOP) \rightarrow$	Mucosal
	_	(high grade)		resection
CIS				

WHO World Health Organization classification, SIN squamous intraepithelial neoplasia classification, SIL modified binary system of SIN [45, 55], OIN/CIS (JSOP) oral intraepithelial neoplasia/carcinoma in situ (Japanese Society for Oral Pathology), OED oral epithelial dysplasia, CIS carcinoma in situ

Int J Cancer. 2015 Feb 1;136(3):503-15.

Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory.

Dionne KR¹, Warnakulasuriya S, Zain RB, Cheong SC.

WHO Classification of Head and Neck Tumours

Edited by Adel K. El-Naggar, John K.C. Chan, Jeonifer R. Grandie, Takashi Takata, Pieter J. Slootweg

Histopathology

Histopathology 2014, 65, 456-464. DOI: 10.1111/his.12427

Evaluation of a new grading system for laryngeal squamous intraepithelial lesions—a proposed unified classification

Nina Gale, Rok Blagus,¹ Samir K El-Mofty,² Tim Helliwell,³ Manju L Prasad,⁴ Ann Sandison,⁵ Metka Volavšek, Bruce M Wenig,⁶ Nina Zidar & Antonio Cardesa⁷ Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, ¹Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia, ²Department of Pathology and Immunology, School of Medicine, Washington University, St Louis, MO, USA, ³Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK, ⁴Department of Pathology, Yale University School of Medicine, New Haven, CT, USA, ⁵Department of Histopathology, Charing Cross Hospital, London, UK, ⁶Department of Pathology, Beth Israel Medical Center, New York, NY, USA, and ⁷Department of Pathology, Hospital Clinic, University of Barcelona, Barcelona, Spain

Date of submission 23 January 2014 Accepted for publication 29 March 2014 Published online Article Accepted 1 April 2014

Classification	Hyperplastic form	Atrophic form	
Hyperplasia/	Thickened, hyperplastic epithelium	Atrophy	
keratosis	Rare mitosis confined to suprabasal layer	Thin mucosa	
	Normal maturation	Normal mucosal maturation	
	Surface keratinization common	No nuclear pleomorphism	
	No nuclear pleomorphism		
SIN I (low grade)	Epithelial hyperplasia	Some proliferation of basal-like cells	
	Increased mitoses common [1-2 per high power field (HPF)]	Increased mitoses (1-2 per HPF)	
	Three or more layers of basal-like cells	Minor nuclear pleomorphism	
	Minor nuclear pleomorphism	Surface maturation still evident	
SIN II (high grade)	Epithelial hyperplasia	Proliferation of basal-like cells involving the full thickness	
	Mitoses in all layers common, including abnormal forms	Prominent submucosal changes	
	Marked epithelial maturation abnormalities with immature basal-like cells constituting inner and middle one third or	Numerous mitoses at all levels; may have abnormal mitotic forms	
	in combination with premature keratinization, including	Prominent nuclear pleomorphism	
	presence of pearls	Little or no evidence of maturation or keratinization	
	Prominent nuclear pleomorphism		
	Increased chromatin staining		

THORE - CROSSINGATION OF SQUALIOUS INTRAVPRIATION INOPERSIA (STATE [12]

Figures 1. Low-grade squamous intraepithelial lesion. Hyperplastic squamous epithelium with augmented parabasal cells, oriented perpendicularly to the basement membrane, extends up to the middle of the epithelial thickness. The upper part of the epithelium is unchanged. There is no cytological atypia.

Figure 3. High-grade squamous intraepithelial lesion. Polymorphic epithelial cells occupy two-thirds of the epithelial thickness, and perpendicular orientation to the basement membrane is preserved.

Figure 2. Low-grade squamous intraepithelial lesion. Augmented parabasal cells, oriented perpendicularly to the basement membrane, extends up to the one third of the epithelial thickness. The upper part of the epithelium is unchanged. There is no cytologic atypia.

Figures 4. High-grade squamous intraepithelial lesion. The thickened epithelium is almost entirely occupied by moderately polymorphic epithelial cells, which show preserved perpendicular orientation to the basement membrane. Increased mitotic activity is evident.

Histopathology

Fitzgatesing 2024, 65, 456-454, D05 10 1111/86 10427

Evaluation of a new grading system for laryngeal squamous intraepithelial lesions—a proposed unified classification

 \odot

Nina Gole, Roh. Blaguss¹ Samir K. El-Mofty,² Tim Helliwell,² Marin J. Prassel,⁹ Ann Samdhan, 7 Marlin Volarske, Bruce M. Wenig,⁶ Nina Zdar & Annonio Cardreas' Latitus of Dabdag, Taulug V Maline, Lanceniu of Jublien, Blaine Stevent, "Logenson of Pablodge and Janesolge, Volar Status, Cardina Charles, University of Jublien, Stevent, "Logenson of Pablodge and Immunology, Volar Jublien, Cardream, Vilan, Taylor, Charl, "Ingenture of Volarioge and Cardra Dabdag, Languity of Medium Lancencu, Vilan, Status, Toka, "Ingenture of Maline, Clarent Center Maline, Directing of Leopone of Hastpabloge, Charles Center Republic Lance, Telephane, New How, CL. USA, "Department of Hastpabloge, Charles Center Republic Lance, U.S., "Department of Pablodge, Bordinen Malinei Center, New York, NY, USA, and "Department of Pathologe, Hestial Cante, University of Barodine, Spain."

Date of information 23 (accurry 3014 Accepted for publication 23 Merch 2014 Published eclare deteck doupted 1 April 2014

Figures 5. Carcinoma in situ. Pronounced architectural disorder of the epithelium with severe cellular and nuclear atypias and increased number of mitoses and dyskeratotic cells are evident.

Figures 6. Carcinoma *in situ*. All histological characteristics of carcinoma *in situ* are present: pronounced architectural disorder, severe cellular and nuclear atypias and increased number of mitoses. Minimally preserved epithelial maturation is seen in the upper layer.

Table 3.02	Morphological criteria for the classification of laryngeal precursor lesions (797).	
and the print with the second		

Low-grade dysplasia (including previous category of mild dysplasia):

Low malignent potential: a spectrum of incrpticlogical changes ranging from squamous hyperplasis to an augmentation of basisl and parabasisl cells occupying as much as the lower half of the optiticium, while the apperportion retains maturation

Architectural criteria	 Stratification is preserved: transition of basal cells or augmented basal perabasal cell layer with perpendicular orientation to the basement membrane to prickle cells horizontally oriented in the upper part. Spinous layer: spectrum of changes ranging from increased spinous layer in the whole thickness up to changes in which prickle cells are seen only in the upper epithelial half. Bosel/barabasal layer: spectrum of changes, from 2–3 unchanged layers to augmentation of basal and parabasal cells in the tower half of the epithelium.
Cytological criteria	At most minimal cellular atypia Parabasal cellular atypia Parabasal cellular slightly increased cytopiasm compared to basal cells, enlarged nuclei, uniformity distributed chromatin, no intercellular bridges Rare regular mitoses in or near basal layer Few dyskeratotic cells present

High-grade dysplasia (including previous categories of moderate dysplasia, severe dysplasia, and carcinoma in situ):

A premotignant lesion; a spectrum of changes including immature optimitial cells occupying at least the lower salt of the optimitial and as much as the whole epithelial thickness.

Architectural criteria ^a	Abnormal maturation Variable degrees of disordered stratification and polarity in as much as the whole opithelium
	Attered epithelial cells usually occupying from half to the entire opithelial thickness. Two subtypes: keratinizing (spinous-cell type) and non-koratinizing (basal-coll type) Variable degree of integalarly shaped rete (bulbous, downwardly extending), with an intact basement membrane
111111111111	No strumal alterations
Cytological criteria ^a	Easily identified to conspicuous cellular and nuclear atypia, including marked variation in size and shape, marked variation in staining intensity with tropuent hyperchromasia, nucleoli increased in number and size Increased N.C ratio
	Increased mitoses at or above the suprabasal level, with or without atypical forms. Dyskeratotic and apoptotic cells are frequent throughout the entire epithelium
⁴ Complete loss of stratifical cardinoma in situ if a three-	tion and policity and/or severe cytological alygia and atypical mitoses qualifies as dered system is used.

Level of abnormal maturation WHO 2005	WHO 2005 classification 92 832 2417 5 ISBN	SIN Classification 978 1 4160 2589 4 ISBN	Ljubljana classification 18752537	WHO 2017 classification 24689850
	Squamous hyperplasia	Squamous hyperplasia	Squamous hyperplasia	LG SIL
Lower 1/3	Mild dysplasia	SIN 1	Basal/parabasal hyperplasia	
1/3 to 1/2	Moderate	SIN 1? or SIN2	Atypical hyperplasia	HG-SIL
Upper 1/2-3/4	Moderate	SIN 2		
Full thickness	Severe dysplasia			
	CIS		CIS	CIS

SIN = squamous intraepithelial neoplasia LG SIL= low-grade intraepithelial lesion HG SIL = high-grade intraepithelial lesion

Case 1N Woman 63 yo smoker oral cavity

Case 1C Man 61 yo

Verrucous carcinoma (Ackerman tumor, florid oral papillomatosis)

- Most often older man (70 yo), rare
- Very well differentiated sqamous cell carcinoma with keratinisation without atypias.
- No "invasive" aspect but can be the origin of important local damage
- Oral cavity (15-35%) and larynx, mostly at the level of the true vocal cord (1-4%). Sometimes seen in the supraglottis, subglottis, trachea..
- Linked to tobacco smoking, no association with HPV

Verrucous carcinoma (Ackerman tumor, florid oral papillomatosis)

- Thickened, club-shaped projection and invaginations of well differentiated squamous epithelium.
- One ore several basal layers. Rare mitosis, no abnormal mitosis.
- Invasion of the stroma with a well defined pushing border and invasion below the level of adjacent epithelium are usually difficult to be observed. Be careful with the small biopsies
- Lymphoplasmatic inflammation common
- Hybrid SCC/invasive SCC

Verrucous carcinoma (Ackerman tumor, florid oral papillomatosis)

- No metastasis but possibility to transform in invasive SCC : conventional SCC with verrucous shape
- Numerous differential diagnosis : well differentiated squamous cell carcinoma, papillary SCC, warts, papilloma, inverted Schneiderian papilloma or atypical verrucous hyperplasia
- Surgery is the main treatment. Local control sometimes difficult
- Excellent prognosis if the surgery is complete. 5y survival rate >80%
- Radiotherapy is less recommended (transformation?)

Case 1F Homme 34 ans biospies fosses nasales

Case 1J Man 54 yo sinus cavity biopsy

Sinonasal papilloma

Squamous, transitional, mucinous, columnar No grade for dysplasia

- exophytic Thin axillary, fibrous, recurrence 20%
- inverted: Multiple inversions of the surface epithelium into the underlying stroma edematous axes, exophytic papillary fringes and inverted aspects, "microabscess",
 - recurrence 30%
 - Association/transformation carcinoma (SCC, mucoepidermoid, adenocarcinoma or SNUC)
- oncocytic : rare, same architecture, mucous microcysts and "microabscess«
 - recurrence 40%.
 - Association with carcinoma (SCC, mucoepidermoid, adenok or SNUC

Sinonasal papilloma

- Developed at the expense of the respiratory type epithelium, they represent 0.4 to 4.7% of nasosinus tumors.
- 2 to 5H / 1F, with a peak around 50 years old. Three histological types are described:

	Exophytique: 32%	Inverted: 62%	Oncocytic: 6%
HPV role	Perhaps important	discussed	no
Localisation	Anterior nasal septum	Nasal cavity and maxillary sinus	paroi latérale nasale
transformation	exceptional	11-15% (1,9-27)	4 à 17%

• For all the cases, recurrence is the main evolution risk (30%)

Review

Sinonasal inverted papilloma: From diagnosis to treatment

Q. Lisan, O. Laccourreye, P. Bonfils*

Service d'ORL et de Chirurgie Cervico-Faciale, Hópital Européen Georges Pompidou, Faculté de Médecine Paris Descartes, Université Paris V, 20 Rue Leblanc, 7501 5 Paris, France

Table 1	
Krouse classi	fication, from [28].
	Krouse staging system for inverted papilloma

π	Tumor totally confined to the nasal cavity, without extension into the sinuses. There must be no concurrent malignancy.
12	Tumor involving the ostiomeatal complex, and ethnoid sinuses, and/or the medial portion of the maxillary sinus, with or without involvement of the nasal cavity. There must be no concurrent malignancy.
В	Tumor involving the lateral, inferior, superior, anterior, or posterior walls of the maxillary sinus, the sphenoid sinus, and/or the frontal sinus, with or without involvement of the medial portion of the maxillary sinus, the ethmoid sinuses, or the pasal cavity. There must be no concurrent malignancy
T4	All tumors with any extranasal/extrasinus extension to involve adjacent, configuous structures such as the orbit, the intracranial compartment or the pterygomaxillary space. All tumors associated with malienancy.

Table 2

Surgical approach according to tumor extension, following [4,12-15,29,31-34,36].

Involvement	Suggested surgical approach	
Septum Lateral wall of nasal cavity Anterior or posterior ethmoid Sphenoethmoid and sphenoid spaces Maxillary sinus (medial, superior or posterior wall) Frontal space and frontal sinus (limited medial involvement)	Endonasal endoscopic	
Lateral wall of frontal sinus	Endonasal endoscopic + frontal osteoplastic flap (e.g., bicoronal approach)	
Maxillary sinus (anterior, inferior or lateral wall)	Endonasal endoscopic + Caldwell-Luc approach	
Extrasinus extension Associated carcinoma	External (e.g., paralateronasal approach)	

ORIGINAL PAPER

Transcriptionally Active High-Risk Human Papillomavirus is Not a Common Etiologic Agent in the Malignant Transformation of Inverted Schneiderian Papillomas

Lisa M. Rooper¹ · Justin A. Bishop^{1,2} · William H. Westra^{1,2,3}

Fig. 3 Non-keratinizing SCC of the sinonasal tract with inverted growth characterized by lobules of tumor cells with smooth and rounded borders (a). Despite some morphologic similarities to inverted Schneiderian papilloma, a synchronous or metachronous benign papilloma could not be histologically documented. Unlike the cases of Schneiderian papilloma with or without evidence of carcinomatous transformation, this carcinoma was positive for high-risk HPV (b) (high-risk HPV RNA in situ hybridization)

Be careful! Sometimes truly SCC can have "inverted sinonasal papilloma" shape

Sinonasal papilloma inverted type

- Most common form of sinonasal papillomas (schneiderian)
- Differential diagnosis: epithelial respiratory adenomatoid hamartoma
- Evolution:
 - recurrence in about 20-30%
 - Sampling ++ (inclusion if possible) due to possibility of transformation in transitional carcinoma or squamous cell carcinoma (10%)
- Role of HPV to be defined

Transformed inverted papilloma.

Case 1K Man 51 yo nasal cavity lesion

?

Carcinoid of the Larynx

Nelson C. Goldman, MD; C. Ian Hood, MD; and G. T. Singleton, MD, Gainesville, Fla Arch Otolaryng—Vol 90, July 1969

James M. Woodruff, M.D. Andrew G. Huvos, M.D. Jatin P. Shah, M.D. Frank P. Gerold, M.D.

Robert A. Erlandson, Ph.D.

Neuroendocrine carcinomas of the larynx

A study of two types, one of which mimics thyroid medullary carcinoma

The American Journal of Surgical Pathology 9(11): 771–790, November © 1985 Raven Press, New York

Neuroendocrine carcinomas

- Heterogeneous group of lesions, ranging just as in the lung, from benign tumors to high grade carcinomas
- The most common tumors are moderately differentiated carcinomas (atypical carcinoids) followed by poorly differentiated carcinomas (small cell carcinomas)
- Nests, cords, sheets, trabeculae +/- glands and / or rosettes.
- Tumors most often richly vascularisation. Cells have variable cytological aspects depending on the tumor subtype

(Modified) 2017 WHO Classification of Neuroendocrine carcinomas (NEC) of the Head and Neck

Classification		Criteria
Well-differentiated NEC		 Features of neuroendocrine differentiation Minimal nuclear atypia <2 mitoses/10HPFs
Moderately-differentiated NEC		 Necrosis and/or 2-10 mitoses/10HPFs
Poorly-differentiated NEC	Small cell type	>10 mitoses/10 HPFs
	Large cell type	>10 mitoses/10 HPFs
Mixed neuroendocrine-non- neuroendocrine neoplasms		

Bayardo Perez-Ordoñez, USCAP 2018

2017 WHO Classification of Lung Neuroendocrine Neoplasms (Modified)

	Mitoses per 2mm ²	Necrosis	Ki-67 PI
Typical carcinoid	0-1	No	Up to 5%
Atypical carcinoid	2-10	Focal, if any	Up to 20%
Large cell NEC	>10 (median 70 MF/2mm ²)	yes	40-80%
Small cell NEC	>10 (median 80 MF/2mm ²)	yes	50-80%
Combined with non- small cell carcinoma			

PROCEEDINGS OF THE NORTH AMERICAN SOCIETY OF HEAD AND NECK PATHOLOGY COMPANION MEETING, MARCH 18, 2018, VANCOUVER, BRITISH COLUMBIA, CANADA

Neuroendocrine Carcinomas of the Larynx and Head and Neck: Challenges in Classification and Grading

Study	Tumor type	# of cases	Alterations	Methodology
Kao et al. [24] ^a	WD-NEC MD-NEC LC-NEC SC-NEC	23	p53 overexpression in LC- and SC-NEC No p53 overexpression in WD- and MD-NEC	IHC
Halmos et al. [29] ^b	WD-NEC MD-NEC LC-NEC SC-NEC	10	Negative p53 overex pression HPV16 and HPV18 in one case each	IHC PCR
Alos et al. [30] ⁿ	LC-NEC SC-NEC	19	p53 overexpression p16 overexpression (73% of cases) Rb dysregulation (59% of cases) No HPV-DNA	IHC PCR
Franchi et al. [32] ^c	SC-NEC/SCC	1	Missense TP53 exon 7 with p53 overexpression	IHC TP53 sequencing
La Rosa et al. [33] ^d	SC-NEC/ITAC	I	Aberrant methylation of APC and DAPK1 Gains and losses: 17p13 (TP53), 14q24 (MLH3) no KRAS, BRAF or p53 mutations	Methylation-specific PCR Mutation analysis KRAS, BRAF and PT53

Table 4 Molecular alterations in NECs of the larynx and head and neck

SCC squamous cell carcinoma, ITAC intestinal-type adenocarcinoma

Sites: "head and neck; blarynx; cmaxillary sinus; dnasal cavity

OMS 2017	OMS 2005	Caracteristics
Well differentiated	Carcinoid tumor, well differenciated	Round to slightly spindled cells
carcinoma	neuroendocrine carcinoma.	with ample amphophilic to
60 уо	Synonyms: carcinoid, mature	eosinophilic granular cytoplasm.
Larynx	carcinoid	chromatin in salt and pepper
		pattern
		< 2 mitoses /10HPFs (/2mm ²)
Moderately	Atypical carcinoid, moderately	Morphology
differentiated	atypical differenciated. Synonyms:	neuroendocrin/carcinoid
carcinoma	atypical carcinoid tumor (grade II),	2 to 10 mitoses /10 HPFs (/2mm ²)
Smokers	neuroendocrine carcinoma	and /or necrosis
Larynx	moderatly differenciated, malignant carcinoïde tumor, large	
	cells neuroendocrine carcinoma	

OMS 2017	OMS 2005	Caracteristic
Poorly differentiated neuroendocrine carcinoma Men >60 90% smokers	Large cells poorly differentiated neuroendocrine carcinoma	Morphology : neuroendocrine differenciation. Small to medium size cells with hyperchomatic nuclei finely granular chromatin, indistinct nuclei. Crush artefacts. Large cell carcinoma cytological aspects ≥ 11 mitoses /10 HPFs (/2mm ²), mean 70
	Poorly differentiated neuroendocrine small cell carcinoma. Synonyms: small cells neuroendocrine carcinoma (grade III), poorly small cells neuroendocrine carcinoma	Necrosis, apoptosis At least 1 neuroendocrine marker and/or neuroendocrine granules in electronic microscopy Small cells ≥ 11 mitoses /10 HPFs (/2mm ²), mean
		necrosis frequent
Combined neuroendocrine carcinoma	Small cell neuroendocrine carcinoma neuroendocrine + non small cell carcinoma (SCC or adenocarcinoma)	

Neuroendocrine carcinoma

- Immunohistochemistry: pancytokeratin (AE1 / AE3) + cells, synaptophysin +, chromogranin +, NSE +, NCAM +, neuroendocrine differentiation.
- The tumor cells are sometimes labeled with antibodies to serotonin, calcitonin, bombesin and somatostatin.
- Neuro-endocrine carcinomas can be confused with poorly differentiated squamous cell carcinomas, especially basaloid

INSM1 staining in neuroendocrine tumors of the Head and Neck

Diagnosis	INSM1 n (%)	SYN n (%)	Chromo n (%)	CD56 n (%)
Parathyroid Adenoma	0/7 (0)	1/7 (14.3)	6/7 (85.7)	1/7 (14. 3)
Middle Ear Adenoma	6/6 (100)	6/6 (100)	2/6 (33.3)	3/6 (50)
Paraganglioma	19/19 (100)	19/19 (100)	18/18 (100)	18/18 (100)
Parathyroid Carcinoma	0/16 (0)	5/16 (31.25)	7/16 (43.75)	3/15 (20)
Medullary Thyroid Carcinoma	24/24 (100)	22/22 (100)	22/22 (100)	22/22 (100)
Olfactory Neuroblastoma	15/15 (100)	15/15 (100)	9/11 (81.8)	11/11 (100)
Sinonasal Teratocarcinosarcoma	2/2 (100)	1/1 (100)	0/1 (0)	1/1 (100)
Large Cell Neuroendocrine Carcinoma	6/6 (100)	5/6 (83.3)	5/6 (83.3)	3/6 (50)
Small Cell Carcinoma	14/15 (93.3)	9/14 (64.3)	6/14 (42.9)	9/12 (75)

Rooper et al. Am J Surg Pathol (in press)

Differentiel diagnostic : paraganglioma

Neuroendocrine carcinomas treatment, pronostic

- well-differentiated neuroendocrine carcinoma
 - Surgery
 - Extended survival C.
- Moderately differentiated neuroendocrine
 - Surgery
 - 50% 5 years
 - 30% 10 years
- Poorly differentiated ,euroendocrine
 - Chemotherapy radiotherapy
 - 15% 2 years
 - 5% 5 years

Case 1D woman 45 yo laryngeal lesion

Clinical history

- 30 year old woman
- Antecedent : cyst of the left ovary.
- No alcohol-toxic intoxication.
- Late 2012 dysphonia: squamous cell carcinoma of the right vocal cord and right ventricular band, p16 +.
- 2013 laser resection T3N0 lesion: radiotherapy + cisplatin.

Clinical history

- Recurrence of the laryngeal tumor with progressive dyspnea.
- In September 2014, PET-scan local laryngeal recurrence with bilateral subclinical suspicious cervical lymphadenopathy in the context and a pulmonary nodule of the left lower lobe.
- Fibroscopic examination: voluminous anterior glotto-subglottic tumor bud treated by laser endolaryngeal disobstruction.

Aurora mScope Viewer - Google Chrome X 1 www.iapfrance.com/mediaapi/HtmlViewer.jsp?documentId=3401&mediaId=3416&mediaInfold=&mediaSetId=&securityToken=fd2862a5-655c-41a1-9a05-fc74af24f48b&mediaCommApiUrl=http%3A%2F%2Fwww. 40,0X Vignette de navigation 20,0X 10,0X 5,0X 2,5X 1,25X 0,63X ▽ ē 🤑 ヘ *候* 幅 ⊄× 14:58 09/11/2016 H) S. O Posez-moi une question. 9 3 Adresse -[[]] 9

First biopsies

Prescription du :	26/09/16	Enregistrement du :	27/09/16	12:51		
Prélèvement du :	Non renseignee				Nº Valise / Pneu :	
Références labo :	1639004815 (1192709)	Edition du :	07/11/16	18:02	complète en prévisualisation	
	RECHERCH	E DE PAPILLOMA	VIRUS	HUM	AINS (HPV)	
Localisation		ORL				
Localisation		ORL				
Mode de prélèt	vement	Biopsie paraffinée				
Méthode		Inno-Lipa HPV Genotyping ex	ra ti			
Recherche d'HPV						
Résultat		Positif				
Détection d'HPV à	haut risque					
Résultat		Positif				
Liste de HPV à ha	ur risque détectés					
HPV HR1		16	J			
Détection d'HPV à) bas risque					
Résultat		Négatif				
CONCLUSION						
		Infection simple par : HP	/-16			
HPV à haut risqu	le recherchés	16, 18, 26, 31, 33, 35, 39	45, 51, 52	53, 56, 5	58, 59, 66, 67,68, 73, 82 ,83.	
HPV à bas risqu	e recherchés	6, 11, 40, 42, 43, 44, 54, 61, 62, 70, 81, 89				

Pulmonary biopsies

Reevaluation and complementary immunohistochemistry

Ncam/CD56

Chromogranin

Synaptophysin

Terminology	Synonyms
A. Typical carcinoid	Carcinoid, well differentiated (Grade I) neuroendocrine carcinoma
B. Atypical carcinoid ¹	Malignant carcinoid, moderately differentiated (Grade II) neuroendocrine carcinoma, large cell neuroendocrine carcinoma ¹
C. Small cell carcinoma, neuroendocrine type ²	Small cell neuroendocrine carcinoma, poorly differentiated (Grade III) neuroendocrine carcinoma
D. Combined small cell carcinoma, neuroendocrine type, with non-small cell carcinoma (squamous cell carcinoma, adenocarcinoma,etc.)	Combined small cell carcinoma, composite small cell carcinoma
E. Paraganglioma	Non-chromaffin paraganglioma
¹ Some atypical carcinomas may fulfill the carcinoma of lung ² Not all small cell carcinomas of the lary	e diagnostic criteria of large cell neuroendocrine Classification nx will show neuroendocrine differentiation OMS 2005

Mixed neuroendocrine-nonneuroendocrine neoplasms

Primary Combined Neuroendocrine and Squamous Cell Carcinoma of the Maxillary Sinus: Report of a Case with Immunohistochemical and Molecular Characterization

Alessandro Franchi · Davide Rocchetta · Annarita Palomba · Duccio Rossi Degli Innocenti · Francesca Castiglione · Giuseppe Spinelli

Composite intestinal-type adenocarcinoma and small cell carcinoma of sinonasal tract

R Jain,¹ V Gramigna,² R Sanchez-Marull,² B Perez-Ordoñez^{1,3}

Carcinome épidermoïde

Carcinome neuroendocrine

Courtesy Muriel Hourseau

Courtesy Muriel Hourseau

HPV and HN carcinomas

- HPV infection is also found in various sub types of oropharyngeal squamous cell carcinoma such as lymphoepithelial, adenosquamous, papillary ...
- HPV possibly found in other locations than oropharyngeal cancer (5-20%)

Neuroendocrine carcinoma and HPV?

AE1/AE3

Synaptophysin

Chromogranin

PCR HPV Innolipa négative

(Am J Surg Pathol 2011;35:1679-1684)

Human Papillomavirus-Related Small Cell Carcinoma of the Oropharynx

Justin A. Bishop, MD* and William H. Westra, MD*†

ORIGINAL ARTICLE

(Am J Surg Pathol 2012;36:321-330)

HPV-associated Neuroendocrine Carcinoma of the Oropharynx: A Rare New Entity With Potentially Aggressive Clinical Behavior

Stefan Kraft, MD,*† William C. Faquin, MD, PhD,* and Jeffrey F. Krane, MD, PhD*

ORIGINAL ARTICLE

(Am J Surg Pathol 2016;40:471-478)

Large Cell Neuroendocrine Carcinoma of the Head and Neck

A Clinicopathologic Series of 10 Cases With an Emphasis on HPV Status

Elizabeth D. Thompson, MD, PhD,* Edward B. Stelow, MD,† Stacey E. Mills, MD,† William H. Westra, MD,*[‡]§ and Justin A. Bishop, MD*[‡]§

HPV and neuroendocrine carcinomas

- HPV found in cases of small oropharyngeal small cell neuroendocrine carcinoma Diag histopathology 2013; Bishop J, Am J Surg Pathol 2011; Kraft S, Am J Surg Pathol 2012
- But also in large cell neuroendocrine carcinomas

Case No	CK	p63	CK5/6	Synaptophysin	Chromogranin	TTF-1	CD56	p16	HPV ISH
1	+	-	-	+	-	-	+	+	+
2	+	-		+	-		-	+	+
3	+		+	+	+	-	ND	+	+
4	+	-		Focal +	<u></u>	<u></u> -	+	<u> </u>	ND
5	+	+ (in SqCC)	+ (in SqCC)	+	+	_	Focal +		ND
6	+	+ (in SqCC)	+ (in SqCC)	-	-	-	+	+	-
7	+	-	-	+	-	-	-	+	-
8	+	Focal +	ND	+	2 11	-	+		ND
9	+	Focal +	<u> 14</u>	+	<u> 1997</u>				_
10	+		ND	+	+	-	ND	+	-

Thompson, Am J Surg Pathol 2016

Case	Tumor site	Cell type	Cytokeratins		Neuroendocrine markers					Cell c	ell cycle proteins				
			AE1/AE3	CK7	CK20	Chro	Syn	NF	CD56	p63	Ki67	p53	p16	Rb	CyD1
1	Oropharynx	SC	+++	ana.	+++	5	+++	33	+++	1752	+++	+++	+++	-	-
2	Larynx	LC	+++	+++	+	+		+++	+++	-	+++	+++	+++	++	-
3	Larynx	LC	+++	+++	-	+++	+++	-	-	-	+++	+++	+	++	+++
4	Larynx	LC	+++	-	-	+++	+++	-	+++	-	+++	++	+	+	++
5	Larynx	SC	+++	-	÷	+++	+++	<u>~</u>	+++	-	+++	+++	+++	3 C	-
6	Larynx	CH D	ם \ / C	++	n	<i>i</i> or	na	/iri	C++	nfe		·im	+	्य	22
7	Larynx	SC+SCC	++++	+	++++	++++	++++		++	2	++++	++++	+	++	+++
8	Larynx	SC + SCC	+++	+	++	+	++	=	++	+++	+++	++++	++	+++	+++
9	Frontal sinus	LC	+++	+	+++	+++	+++	-	+++	+++	+++	++++	++	++	+++
10	Nasal Cavity	SC	+++		-	+++	-	-	+++	-	+++	++++	+++	-	+
11	Nasal Cavity	SC	+++	3)	-	+	(+)	-	++	-	+++	++++	+++	++	+
12	Nasal Cavity	SC	+++	-	-	+++	+++	-	+++	-	+++	++++	+++	++	+
13	Nasal Cavity	SC	+++	-	-	+	++++	<u>~</u>	+++	<u></u>	+++	+++	+++	-	-
14	Parotid gland	SC	+++	-	-	-	+++	+	+++	+++	+++	+++	+++	3 - C	-
15	Parotid gland	SC	+++	+++	2	+++	+++	+++	+++	220	+++	+++	+++		-
16	Parotid gland	SC	++++		+++	2	+++	+++	+++		++++	+++	+++	-	
17	Parotid gland	SC	+++	1.72	+++	+++	+++	+++	+++	100	+++	+++	+++	-	
18	Parotid gland	SC	+++	-	+++	5	+	+++	+++		+++	+++	+++	-	-
19	Parotid gland	SC	++++	्रत्तुः	÷	+++	+++	÷	+++	 .	+++	++++	+++		3 ?

Table 1 Immunophenotype of high-grade neuroendocrine carcinomas of the head and neck

LC large cell, SC small cell, SCC squamous cell carcinoma, Chro chromogranin, Syn synaptophysisn, NF neurofilaments, Rb retinoblastoma, CyD1 cyclin D1

Alos, Virchows archives 2016

High grade neuroendocrine carcinoma of the head and neck

Small cell carcinoma

- Usually arise in larynx, but can occur in sinonasal tract, oral cavity and oropharynx
- Morphologically identical to counterpart in the lung
- Express markers of neuroendocrine differentiation
- Highly aggressive with rapid disease progression
- Can be HPV positive when arising in the oropharynx or sinonasal tract

Large cell neuroendocrine carcinoma

- Usually arise in the larynx, but can occur in sinonasal tract, oral cavity and oropharynx
- Morphologically identical to counterpart in the lung
- Express markers of neuroendocrine differentiation
- Highly aggressive with rapid disease progression
- Can be HPV positive when arising in the oropharynx or sinonasal tract

William Wectra, USCAP 2018 Vancouver

Case 1E Woman 49 yo nasal cavity

NUT carcinomas

- Represents a rare subset of highly aggressive poorly differentiated carcinomas
- Characterized by rearrangement of the NUT (aka NUTM1, nuclear protein in testis) gene, most commonly fused to BRD4.
- Originally described as a mediastinal/thymic malignancy, NC has been reported in the upper and lower aerodigestive tract and rarely in intra-abdominal organs.
- Patients are mainly young adults but the age range varies from the new-born to the elderly.
- Originally considered strictly a neoplasm related to midline structures, recent case reports described this rare disease in lateralized organs (lungs and parotid gland).
- WHO has changed the name from NUTmidline carcinoma to NC

RESEARCH ARTICLE

NSD3-NUT Fusion Oncoprotein in NUT Midline Carcinoma: Implications for a Novel Oncogenic Mechanism Christopher A. French¹, Shaila Rahman², Erica M. Walsh¹, Simone Künnle², Adlai R. Grayson¹, Madeleine E. Lemieux⁹, Noam Grunfeld¹, Brian P. Rubin^{24,5}, Cristina R. Antonescu⁶, Songlin Zhang¹, Rajkumar Venkatraman⁸, Paola Dal Cin¹, and Peter M. Howley²

NUT Carcinoma of the Salivary Glands Clinicopathologic and Molecular Analysis of 3 Cases and a Survey of NUT Expression in Salivary Gland Carcinomas

Abbas Agaimy, MD,* Isabel Fonseca, MD,†‡ Carmo Martins, BSc, PhD,§ Khin Thway, MD, Ryan Barrette, BSc,¶ Kevin J. Harrington, BSc, MBBS, FRCP, FRCR, PhD,#** Arndt Hartmann, MD,* Christopher A. French, MD,¶ and Cyril Fisher, MD

- Figure 1. A novel NSD3–NUT fusion is identifi ed in NMC. **A, histology of the NMC from** which the 1221 cell line was derived reveals a very poorly
- differentiated tumor (magnifi cation, ×400). B, IHC of the tumor using the anti-NUT monoclonal antibody C52 (magnifi cation, ×400). C, RNA-sequencing
- reads spanning the junction of *NSD3 and NUT*. *D, immunoblot of three NMC cell lines and* 293T control cells stained with AX.1 polyclonal antibody to NUT.
- E, immunoblot of the 1221 cell line 48 hours following transfection with control (CTRL), NSD3, and NUT siRNAs stained with the AX.1 antibody
- to NUT. F, NSD3–NUT dual-color bringtogether FISH assay (magnifi cation, ×1,000) using bacterial artifi cial chromosome (BAC) probes telomeric (3') to
- NUT (green), and BAC probes centromeric (5') to NSD3 (red) as depicted in the chromosomes 8 and 15 ideograms. Yellow arrows, NSD3–NUT fusions.
- G, gel electrophoresis of PCR of TC-797 and 1221 cell lines with (+) and without (–) reverse transcriptase reaction. H, schematic of the NSD3–NUT
- predicted encoded protein in comparison with NSD3, NUT, and BRD4–NUT. PWWP, Pro–Trp– Trp–Pro motif; PHD, plant homeo domain; SET, Drosophila
- Su(var)3-9 and 'Enhancer of zeste'; C/H, Cys-His; NES, nuclear export signal sequence; Bromo, bromodomain. Arrows, breakpoints. I, NSD3 dual-color
- split-apart FISH assay using BAC probes fl anking NSD3, as depicted in the chromosome 8 ideogram, depicted in three NMCs, not including 1221, designated
- cases 1–3. All photomicrographs are of identical magnifi cation (×1,000).

Histologic examination

- Poorly differentiated neoplasms composed of poorly cohesive small sized to medium-sized cells with variable squamoid cell component that is focal and abrupt
- Immunohistochemistry :uniform expression of p63 and distinctive punctate expression of the NUT antigen in the tumor cell nuclei.

Case 1I woman 19 yo right parotide lesion with rapid growth

NUT Carcinoma of the Salivary Glands

Clinicopathologic and Molecular Analysis of 3 Cases and a Survey of NUT Expression in Salivary Gland Carcinomas

Abbas Agaimy, MD,* Isabel Fonseca, MD,†‡ Carmo Martins, BSc, PhD,§ Khin Thway, MD, Ryan Barrette, BSc,¶ Kevin J. Harrington, BSc, MBBS, FRCP, FRCR, PhD,#** Arndt Hartmann, MD,* Christopher A. French, MD,¶ and Cyril Fisher, MD

FIGURE 2. Foci of abrupt (clear cell) keratinization were seen in all 3 cases. Potentially misleading features included florid ductular proliferations (A, C) with entrapped of rare goblet cells (A, midlower field) and myxohyaline stromal changes reminiscent of pleomorphic adenoma (D). A to D from case 3.

FIGURE 1. Salivary NCs were centered within salivary parenchyma (A) and displayed poorly cohesive sheets of small-sized to medium-sized cells arranged into pseudoalveolar (B), solid (C), corded (D), or nested (E) pattern. The nucleoli ranged from inconspicuous (C) to prominent (F), note extensive granulocytosis in F (A, B, C from case 3; D, E, F from case 1).

FIGURE 3. IHC showed consistent expression of p63 (A, case 3) and NUT protein (B, case 2). The NUT immunostain highlighted the neoplastic cells amid native salivary tissue (C, case 3). FISH analysis using the NUT probe (D) and BRD4 probe (E) showed break-apart signals indicating a NUT/BRD4 translocation (image from case 1).

NUT Carcinoma

- New entity
- Rare but certainly under diagnosed
- Due to translocation t (15; 19)
- Can be seen at any age but median age about 20 years old
- Think about it in front of a very monotonous AE1 / AE3 proliferation with abrupt keratinization (or large clear cells)
- Anti-NUT immunochemistry
- Very aggressive
- Targeted therapy
- Register patients in the database: www.nmcregistry.org

Courtesy V Costes

Am J Surg Pathol. 2017 April; 41(4): 458-471. doi:10.1097/PAS.000000000000797.

SMARCB1 (INI-1)-deficient Sinonasal Carcinoma: A Series of 39 Cases Expanding the Morphological and Clinicopathological Spectrum of a Recently Described Entity

Abbas Agaimy, MD¹, Arndt Hartmann, MD¹, Cristina R. Antonescu, MD², Simion I. Chiosea, MD³, Samir K. El-Mofty, MD⁴, Helene Geddert, MD⁵, Heinrich Iro, MD⁶, James S. Lewis Jr., MD⁷, Bruno Märkl, MD⁸, Stacey E. Mills, MD⁹, Marc-Oliver Riener, MD¹⁰, Thomas Robertson, MD¹¹, Ann Sandison, MB, ChB, FRCPath¹², Sabine Semrau, MD¹³, Roderick H. W. Simpson, MB, ChB, FRCPath¹⁴, Edward Stelow, MD⁹, William H. Westra, MD¹⁵, and Justin A. Bishop. MD¹⁵

- Sinonasal tract malignancies are uncommon, representing no more than 5% of all head and neck cancers.
- Several recent studies and reviews have emphasized the propensity of this relatively small anatomic area of the body to develop a plethora of histogenetically and biologically distinctive, but morphologically highly overlapping neoplasms
- sinonasal undifferentiated carcinoma (SNUC) as a distinctive and highly aggressive sinonasal carcinoma
- Consequently, the group of SNUCs has been diminishing as new specific entities have emerged including NUT-rearranged carcinoma
- HPV-related adenoid cystic-like carcinoma
- Adamantinoma-like Ewing sarcoma
- Variant of sinonasal carcinoma characterized by loss of nuclear SMARCB1 expression.

Histological examination

- Cellular monotony with relatively monomorphic small-to-medium sized rounded nuclei
- Dispersed chromatin, variably prominent nucleoli and indistinctive cytoplasmic borders.
- Mitotic rates are uniformly high, and necrosis is common.
- Conventional squamous dysplasia/carcinoma in situ was not seen.
- Presence of non-specific, clear, "empty" cytoplasmic vacuoles

Agaimy, AmJ Surg Pathol 2017

Loss of SMARCB1, SMARCB2 reduced, SMARCB4 and ARID1A intact

Nasopharyngeal carcinoma

- Keratinizing squamous cell carcinoma (Well differentiated)
- Basaloid squamous cell carcinoma
- Non-keratinizing squamous cell carcinoma (eg UCNT)
- Node metastases ++ .
- Epidemiology Tabacco, salted and fermented food (nitrosamine),
 EBV (EBER +, less diffuse in keratinizers).

Take home message

- Histological grade of neuroendocrine carcinomas is quite well correlated with prognosis.
- Neuroendocrine large cell carcinoma of the head and neck should be recognized by the WHO.
- Think about new entities
 - NUT carcinoma
 - INI1 deficient
 - HPV-induced carcinoma with CAK / HPV + C Neuroendocrine

Case 1L Man70 yo exophalmia nasopharygeal biopsies

Rhabdomyosarcoma

- Rare malignant mesenchymal tumor with skeletal muscle differentiation
- Embryonal, alveolar, pleomorphic and spindle cell subtypes
- Most common sinonasal sarcoma in both children and adults, pic first decade
- Round to spindle cells, and scant cytoplasm hyperchromatic nuclei
- Alveolar rhabdomyosarcomas harbour a PAX3-FOXO1 fusion and the PAX7-FOXO1 fusin less detected

Courtesy Michel Wassef

- Myogenin (MYF4) MYOD1, desmin, fast myosin, myoglobin +
- SMA + 10%

•AE1/AE3, EMA, chromogranin, CD56, synaptophysin, CD20, CD99 can be positive!!

Neuroectodermic et neuroendocrine tumors and their differential diagnosis

- Olfactory neuroblastoma
- Neuroendocrine carcinoma
- PNET / sarcome d'Ewing
- Melanoma
- Nasosinusal undifferentiated carcinoma
- Plasmocytoma and lymphoma
- Rhabdomyosarcoma
- synovialosarcoma
- Nasal hemangiopericytoma /glomangiopericytoma

Olfactory Neuroblastoma

- Rare, described in 1924 par Berger
- 3% to 5% nasosinal tumors
- Peak 2 to 6 decade
- No known risk factor
- often voluminous at the time of diagnosis
 - top of the nasal cavity
 - others origins (sinus ou endocrâne) discutables
- rare expression hormonale : Cushing, SIADH

No expression of CD99, no Ewing/PNET translocation

Courtesy Michel Wassef

Case 1H woman 37 yo sudden anosmia nasal cavity biopsy

Mucosal melanoma

- Tumor rapidly evolutive
- 1% of all melanomas
- Incidence peak 70y
- Often located on nasal septum or vestibule
- Surgery :sinuses wide excision, followed by radiotherapy despite relative radioresistance
- Immunotherapy +++
- metastatic potential 5-year survival of 20 to 30%

Case 1M woman 19 yo right parotide lesion with rapid growth

